1,207 research outputs found

    Polarization Aberrations

    Get PDF
    The analysis of the polarization characteristics displayed by optical systems can be divided into two categories: geometrical and physical. Geometrical analysis calculates the change in polarization of a wavefront between pupils in an optical instrument. Physical analysis propagates the polarized fields wherever the geometrical analysis is not valid, i.e., near the edges of stops, near images, in anisotropic media, etc. Polarization aberration theory provides a starting point for geometrical design and facilitates subsequent optimization. The polarization aberrations described arise from differences in the transmitted (or reflected) amplitudes and phases at interfaces. The polarization aberration matrix (PAM) is calculated for isotropic rotationally symmetric systems through fourth order and includes the interface phase, amplitude, linear diattenuation, and linear retardance aberrations. The exponential form of Jones matrices used are discussed. The PAM in Jones matrix is introduced. The exact calculation of polarization aberrations through polarization ray tracing is described. The report is divided into three sections: I. Rotationally Symmetric Optical Systems; II. Tilted and Decentered Optical Systems; and Polarization Analysis of LIDARs

    High-Resolution Fourier-Transform Ultraviolet-Visible Spectrometer for the Measurement of Atmospheric Trace Species: Application to OH

    Get PDF
    A compact, high-resolution Fourier-transform spectrometer for atmospheric near-ultraviolet spectroscopy has been installed at the Jet Propulsion Laboratory s Table 1 Mountain Facility (34.4 N, 117.7 W, elevation 2290 m). This instrument is designed with an unapodized resolving power near 500,000 at 300 nm to provide high-resolution spectra from 290 to 675 nm for the quantification of column abundances of trace atmospheric species. The measurement technique used is spectral analysis of molecular absorptions of solar radiation. The instrument, accompanying systems designs, and results of the atmospheric hydroxyl column observations are described

    A CSO Search for ll-C3_3H+^+: Detection in the Orion Bar PDR

    Get PDF
    The results of a Caltech Submillimeter Observatory (CSO) search for ll-C3_3H+^+, first detected by Pety et al. (2012) in observations toward the Horsehead photodissociation region (PDR), are presented. A total of 39 sources were observed in the 1 mm window. Evidence of emission from ll-C3_3H+^+ is found in only a single source - the Orion Bar PDR region, which shows a rotational temperature of 178(13) K and a column density of 7(2) x 101110^{11} cm2^{-2}. In the remaining sources, upper limits of ~10111013^{11} - 10^{13} cm2^{-2} are found. These results are discussed in the context of guiding future observational searches for this species.Comment: 9 pages, 8 figures, 4 table

    Ligand radicals as modular organic electron spin qubits

    Get PDF
    The intrinsic redox activity of the dithiolene ligand is presented here as the novel spin host in the design of prototype molecular electron spin qubit where the traditional roles of the metal and ligand components in coordination complexes are inverted. A series of paramagnetic bis(dithiolene) complexes with group 10 metals – nickel, palladium, platinum – provides a backdrop to investigate the spin dynamics of the organic ligand radical using pulsed EPR spectroscopy. The temperature dependence of the phase memory time (TM) is shown to be dependent on the identity of the diamagnetic metal ion with the short times recorded for platinum a consequence of a diminishing spin‐lattice (T1) relaxation time driven by spin‐orbit coupling. The utility of the radical ligand spin center is confirmed when it delivers one of the longest phase memory times ever recorded for a molecular two‐qubit prototype

    Implementation and performance of SIBYLS: a dual endstation small-angle X-ray scattering and macromolecular crystallography beamline at the Advanced Light Source.

    Get PDF
    The SIBYLS beamline (12.3.1) of the Advanced Light Source at Lawrence Berkeley National Laboratory, supported by the US Department of Energy and the National Institutes of Health, is optimized for both small-angle X-ray scattering (SAXS) and macromolecular crystallography (MX), making it unique among the world's mostly SAXS or MX dedicated beamlines. Since SIBYLS was commissioned, assessments of the limitations and advantages of a combined SAXS and MX beamline have suggested new strategies for integration and optimal data collection methods and have led to additional hardware and software enhancements. Features described include a dual mode monochromator [containing both Si(111) crystals and Mo/B(4)C multilayer elements], rapid beamline optics conversion between SAXS and MX modes, active beam stabilization, sample-loading robotics, and mail-in and remote data collection. These features allow users to gain valuable insights from both dynamic solution scattering and high-resolution atomic diffraction experiments performed at a single synchrotron beamline. Key practical issues considered for data collection and analysis include radiation damage, structural ensembles, alternative conformers and flexibility. SIBYLS develops and applies efficient combined MX and SAXS methods that deliver high-impact results by providing robust cost-effective routes to connect structures to biology and by performing experiments that aid beamline designs for next generation light sources

    Ariel - Volume 9 Number 4

    Get PDF
    Executive Editor Emily Wofford Business Manager Fredric Jay Matlin University News John Patrick Welch World News George Robert Coar Editorials Editor Steve Levine Features Mark Rubin Brad Feldstein Sports Editor EIi Saleeby Circulation Victor Onufreiczuk Lee Wugofski Graphics and Art Steve Hulkower Commons Editor Brenda Peterso

    What really matters about teacher education at Cathedrals Group Universities: volume 2 the case studies

    Get PDF
    The case studies show insight into the extent that there is a shared understanding between schools, students and staff members in some of England’s oldest providers of teacher education in England. Is there something particular about that provision? Could it be described as distinctively, implicitly or explicitly Christian? Is there a sense of shared thinking about the answers to these questions in the provision of teacher education and the students, university tutors and school staff members who partner with these universities to educate the next generation of teachers? This document provides five answers to those questions. The answers are snapshots of the perception of teacher education at these universities, at a time when teacher education has become a major purpose of schools, and universities have found themselves being questioned and challenged about their role in the development of new teachers

    Antibodies in the Diagnosis, Prognosis, and Prediction of Psychotic Disorders.

    Get PDF
    Blood-based biomarker discovery for psychotic disorders has yet to impact upon routine clinical practice. In physical disorders antibodies have established roles as diagnostic, prognostic and predictive (theranostic) biomarkers, particularly in disorders thought to have a substantial autoimmune or infective aetiology. Two approaches to antibody biomarker identification are distinguished: a top-down approach, in which antibodies to specific antigens are sought based on the known function of the antigen and its putative role in the disorder, and emerging bottom-up or omics approaches that are agnostic as to the significance of any one antigen, using high-throughput arrays to identify distinctive components of the antibody repertoire. Here we review the evidence for antibodies (to self-antigens as well as infectious organism and dietary antigens) as biomarkers of diagnosis, prognosis, and treatment response in psychotic disorders. Neuronal autoantibodies have current, and increasing, clinical utility in the diagnosis of organic or atypical psychosis syndromes. Antibodies to selected infectious agents show some promise in predicting cognitive impairment and possibly other symptom domains (eg, suicidality) within psychotic disorders. Finally, infectious antibodies and neuronal and other autoantibodies have recently emerged as potential biomarkers of response to anti-infective therapies, immunotherapies, or other novel therapeutic strategies in psychotic disorders, and have a clear role in stratifying patients for future clinical trials. As in nonpsychiatric disorders, combining biomarkers and large-scale use of bottom-up approaches to biomarker identification are likely to maximize the eventual clinical utility of antibody biomarkers in psychotic disorders

    Association among plasma levels of monocyte chemoattractant protein-1, traditional cardiovascular risk factors, and subclinical atherosclerosis

    Get PDF
    ObjectivesWe sought to evaluate the association between plasma levels of monocyte chemoattractant protein (MCP)-1 and the risk for subclinical atherosclerosis.BackgroundMonocyte chemoattractant protein is a chemokine that recruits monocytes into the developing atheroma and may contribute to atherosclerotic disease development and progression. Plasma levels of MCP-1 are independently associated with prognosis in patients with acute coronary syndromes, but few population-based data are available from subjects in earlier stages of atherosclerosis.MethodsIn the Dallas Heart Study, a population-based probability sample of adults in Dallas County ≤65 years old, plasma levels of MCP-1 were measured in 3,499 subjects and correlated with traditional cardiovascular risk factors, high-sensitivityC-reactive protein (hs-CRP), and coronary artery calcium (CAC) measured by electron beam computed tomography.ResultsHigher MCP-1 levels were associated with older age, white race, family history of premature coronary disease, smoking, hypertension, diabetes, hypercholesterolemia, and higher levels of hs-CRP (p < 0.01 for each). Similar associations were observed between MCP-1 and risk factors in the subgroup of participants without detectable CAC. Compared with the subjects in the lowest quartile of MCP-1, the odds of prevalent CAC (CAC score ≥10) for subjects in the second, third, and fourth quartiles were 1.30 (95% confidence interval [CI] 0.99 to 1.73), 1.60 (95% CI 1.22 to 2.11), and 2.02 (95% CI 1.54 to 2.63), respectively. The association between MCP-1 and CAC remained significant when adjusted for traditional cardiovascular risk factors, but not when further adjusted for age.ConclusionsIn a large population-based sample, plasma levels of MCP-1 were associated with traditional risk factors for atherosclerosis, supporting the hypothesis that MCP-1 may mediate some of the atherogenic effects of these risk factors. These findings support the potential role of MCP-1 as a biomarker target for drug development

    Neural correlates of executive function and working memory in the 'at risk mental state'

    Get PDF
    Background and Aims: People with ‘prodromal’ symptoms have a very high risk of developing psychosis. We used functional MRI to examine the neurocognitive basis of this vulnerability. Method: Cross-sectional comparison of subjects with an ARMS (n=17), first episode schizophreniform psychosis (n=10) and healthy volunteers (n=15). Subjects were studied using functional MRI while they performed an overt verbal fluency task, a random movement generation paradigm and an N-Back working memory task. Results: During an N-Back task the ARMS group engaged inferior frontal and posterior parietal cortex less than controls but more than the first episode group. During a motor generation task, the ARMS group showed less activation in the left inferior parietal cortex than controls, but greater activation than the first episode group. During verbal fluency using ‘Easy’ letters, the ARMS group demonstrated intermediate activation in the left inferior frontal cortex, with first episode groups showing least, and controls most, activation. When processing ‘Hard’ letters, differential activation was evident in two left inferior frontal regions. In its dorsolateral portion, the ARMS group showed less activation than controls but more than the first episode group, while in the opercular part of the left inferior frontal gyrus / anterior insula activation was greatest in the first episode group, weakest in controls and intermediate in the ARMS group. Conclusions: The ARMS is associated with abnormalities of regional brain function that are qualitatively similar to those in patients who have just developed psychosis but less severe
    corecore